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Abstract

The installation of Advanced Metering Infrastructure (AMI) across the
Commonuwealth Edison distribution system provides renewed potential for big data
analytics to characterize the interaction between consumer loads and the utility’s
system-wide costs. In this paper, we investigate different consumers’ marginal system
cost impacts as a result of their load profiles.

In the first portion of the study, we outline the process of customer profiling and
segmentation, leveraging the k-means clustering algorithm to group Commonwealth
Edison customers into clusters across different billing periods, seasons and customer
delivery classes. Two pricing schemes were developed and applied to clustered load
profiles. A marginal rate pricing model was built to exclusively reflect the impact of
system costs on customers. For comparison, a flat rate was determined using
historical price-to-compare data.

Analysis of the resulting cost profiles reveals not only the role of load magnitudes, but
also the significant impact of load shapes on marginal system costs. Regression tests
that were conducted indicate that the time deviation between a cluster’s peak load and
the system-wide peak load plays an important role in dictating the cost to consumers.
In particular, time deviation was shown to be the dominant driver of system costs
during summer months when the system costs are the highest.




Introduction

When constructing pricing schemes or policy recommendations in the context of utility
billing, one must have a firm grasp of the marginal impact that consumers have on
underlying system grid costs. Constructing an idealized model from this baseline would
price electricity according to core system costs associated with serving a customer on a
real-time basis. However, while traditional Residential Real Time Pricing (RRTP)
schemes can serve as close proxies, they fail to isolate these core system costs from other
overhead administrative costs baked in by the utility provider. Thus, it’s worth
constructing an idealized pricing model based on the perfect knowledge of historical
system costs on a real-time basis for a particular provider: Commonwealth Edison.

Developing this pricing scheme is insightful, but to truly investigate the marginal impact
of different consumers, one must apply it to customer load data to yield cost profiles
reflecting their relative system impacts. However, conducting such an analysis on the
entire customer pool is impractical. With the widespread adoption of smart meters
among ComEd customers in Illinois, the wealth of data available for analysis is quickly
reaching unwieldy proportions.

This introduces the challenge of drawing broad conclusions from customer behaviors
that are inherently distinct. It’s not hard to understand that consumers have different
preferences and consume energy in different ways, but this makes it extremely
challenging to formulate comprehensive recommendations that are relevant to every
customer. Indeed, different types of electricity consumers are more responsive to
recommendations that are catered to their particular consumption behavior. The ability
to draw distinctions between different types of consumers is what makes customer
segmentation and profiling valuable. With literally millions of customers’ half-hourly
consumption data, big data techniques are required to analyze electricity usage on a
macroscopic level.



Customer Segmentation and Profiling

For the purposes of this big energy data analysis, the raw anonymized customer data is
pulled from Commonwealth Edison’s Advanced Metering Infrastructure (AMI)
readings. The data was first grouped and cleaned before segmented using the k-means
clustering algorithm.

Data Grouping and Cleaning

The raw customer load data (in kWh) contains indices that mark the date associated
with the measured data, as well as the customer delivery class. The four residential
classes are as follows:

e (23 — Residential single family without electric space heat

e (24 — Residential multi-family without electric space heat (three or more
customers served through separate meters from a single service connection e.g.
an apartment building)

e (25 — Residential single family with electric space heat

e (26 — Residential multi-family with electric space heat

Because these categories were readily available attached to the raw data, it was taken
advantage of in order to pre-segment the data by billing period (June 1* of any given
year to May 31* of the following year), delivery class, season, and weekday or weekend.
Note that the data for each individual consumer was averaged and scaled by their
average total energy usage. This meant the algorithm would segment customers into
clusters based exclusively on similarities in the shape of their load profile, as opposed to
accounting for the impacts of magnitude.

Before implementing k-means clustering, anomalies and null values that would
otherwise interfere with the algorithm were dropped from the data. Specifically,
customers consuming on average less than 1 kWh a day were considered outliers and
discarded in this analysis. In addition, any rows containing N/A values were dropped.
Any other extreme outliers were removed on a case-by-case basis.

Figure 1 — Visual representation of the data segmentation process prior to implementing K-Means Clustering.
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Now that our customer data has been averaged, scaled and grouped, we can implement
k-means clustering to profile customers. Since no explicit labels to describe the data are
provided for the algorithm to learn from, this is a form of unsupervised machine
learning. The similarities between customers are measured based on 48 attributes (load
usage at every 3omin. interval over 24 hours) at the same time, using a Euclidean
distance metric. An outline of our implementation of the algorithm is as follows:

Day

K-Means Clustering

1. Determine the number of clusters k to output using the elbow method and
silhouette scores. Since the elbow method can be subjective, silhouette scores
were designated as deciding factors in close cases.

2. Randomly select k customers to form the starting centers for the clusters (i.e. the
centroids).

3. Data assignment — sort each observation (customer) into clusters based on its
Euclidean distance to the nearest centroid:

Where

4. Centroid adjustment — adjust the positions of centroids by averaging the
observations assigned to that cluster.

5. Iterative refinement — repeat steps 3-4 until cluster assignments remain
unchanged and the intra-cluster sum of squares is minimized:



Where and

The resulting clusters and their respective observations are exported as .csv files and the

centroids are plotted for reference.

Figure 2 — A representation of the K-Means clustering process (for C26 weekdays in spring 2016). The input
number of centroids (K = 4) is first determined via examination of the elbow curve or silhouette score. The

algorithm then segments the data into (K = 4) clusters. The right-hand-side plots show the distribution of customers
across the clusters and a visual compilation of one such cluster.
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Modelling Price Schemes

In this study, we examine two different pricing schemes: a marginal real-time cost
model and a flat-rate model. The flat-rate scheme reflects actual prices charged to
consumers on a flat-rate plan. The marginal cost scheme is a pricing framework
designed to reflect real-time system grid costs.

Different price components introduced hereafter may vary based on:

Marginal Cost Pricing Model

There are four components that make up the design of the marginal real-time cost
pricing rate (hereafter referred to as “Marginal Rate”):

1.

Delivery charges — common charges indicating the price of delivering electric
supply through the local distribution grid. They are calculated from ComEd’s
Embedded Cost of Service Study (ECOSS)".

Capacity Charge — rates that account for the procurement of resources required
by the regional transmission grid (i.e. PJM), in particular for grid emergencies. In
practice, electricity suppliers must pledge reserve resources in addition to
meeting its customers’ demand. These are determined through PJM Residual
Auction data for ComEd? and divided by delivery class based on capacity peak
load contributions (PLC).

Transmission charges — charges used by utility providers (i.e. ComEd) to offset
costs accrued through electricity transmission services from generators to local
distribution centers via high voltage power lines. These are determined from

' Docket No. 17-0196, ComEd Ex. 7.01, 2017 FRU ECOSS

2 http://www.pjm.com/markets-and-operations/rpm.aspx

3 https://www.comed.com/SiteCollectionDocuments/PLCs by Delivery Class.pdf
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ComEd’s Annual Transmission Revenue Requirement* and divided by delivery
class based on network PLCs.

4. Energy charges — market rates retrieved from Locational Marginal Pricing data
(LMPs)®. As a reflection of electric prices at every location in the distribution grid,
LMPs represent the system cost components of electric supply charges.

Three of these components (delivery charges, capacity charges and transmission
charges) vary between different yearly billing periods, seasons and customer classes, but
remain constant on an hourly basis. Energy charges vary by billing period, season and
hour, but not by class.

The half-hourly marginal rate in ¢/kWh,, is designed as:

Because D, C and T are “fixed” throughout the 24 hours of the day, we group them in a
defined fixed rate:

More specifically, the daily marginal rate in ¢/kWh, , is a 48 by 1 matrix:

More detailed derivations of the individual rate components can be found in Appendix I.
Reflecting these components, the finalized marginal cost pricing model yields a unique
price for each billing period, season, customer class and hourly interval.

Flat-Rate Pricing Model
There are three components that make up the flat-rate pricing model:

1. Historical Price-to-compare — a summation of ComEd’s electric supply charge
(or energy charge) and transmission services charge (which encompasses
capacity and transmission charges)®.

4 https://www.pjm.com/markets-and-operations/billing-settlements-and-credit/formula-rates.aspx

5 https://www.pjm.com/markets-and-operations/energy/real-time/Imp.aspx

¢ https://www.pluginillinois.org/FixedRateBreakdownComEd.aspx
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2. Purchased electricity adjustment (PEA) — a price adjustment accounting for the
difference between ComEd price-to-compare revenues and the actual cost of
supplying electricity to customers.

3. Delivery Charges — see marginal cost pricing model.

Both price-to-compare and PEA varies by year and season, but not by customer class or
an hourly basis. The design of delivery charges has been adjusted to also vary exclusively
by year and season (i.e. a “flat” delivery charge):

The flat rate in ¢/kWh, , is therefore defined as:

Rate Variation Summary

Table 1 — A representation of the variability of each pricing scheme. AV indicates that the rate of the
corresponding row index varies with the corresponding column index.

Year Season Class Hour
Flat Rate | ¢ v
Marginal Rate | V4 V4 v

Note that in the case of marginal rates, different customer classes’ energy usage patterns
and contributions to system costs result in each class being charged very differently.
Such different consumption behaviors may result in very different rate assignments,
which will be explained in later sections.

Hourly Indifference Ratio and Critical Point

On an hourly basis, is defined as

Preference Implications

11



If, consumers are indifferent between the two pricing schemes.

If, flat rate will be higher, and consumers who are on flat rates are “over-paying”,
effectively subsidizing system costs for others.

If, marginal rates are higher, and consumers on flat rates are “underpaying”,
effectively shifting their impact on system costs to others.

The HIR theoretically shows the optimal option for the consumer at every hour.
However, consumers can’t switch between different pricing schemes on an hourly basis,
and we need to construct our consumer preference implications from a cost perspective.

12



Modelling Costs

As in modelling price schemes, different cost components introduced hereafter may vary
based on:

Mathematically, daily total costs can be defined as:

Where daily loads are given in 48 30-minute intervals. These can be expressed
mathematically as 1 by 48 matrices:

Flat-Rate Cost

Following the general equation outlined above, we can calculate the total flat-rate cost
for a load profile on a daily basis:

Note that the total flat-rate cost can be broken down into hourly costs to yield a flat-rate
cost profile for each customer in a cluster.

Figure 3 — Hourly-averaged flat-rate cost profiles for each cluster in the 6/1/16 — 5/31/17 billing period.

13
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Marginal Rate Cost

We define an analogous relationship for the total marginal rate cost of a load profile on a
daily basis:

As with the previous case, the total marginal rate cost can be broken down into hourly
costs to yield a marginal rate cost profile for each member of a cluster.

Figure 4 - Hourly-averaged marginal-rate cost profiles for each cluster in the 6/1/16 — 5/31/17 billing period.
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Cost Analysis

Now that cost calculations have been conducted under flat-rate and marginal rate
schemes for each cluster, we wish to compare them against one another. While
subtracting one cost profile from another would provide a simple measure of the cost
deviation between the two pricing schemes, such a metric scales with load magnitude
and would result in unfair comparisons between clusters that have differing total loads.
To provide a valid metric for comparison purposes, we define a non-dimensional
number: the daily indifference ratio.

Daily Indifference Ratio and Critical Point
We define the as

More specifically,

Preference Implications
If, consumers are indifferent between the two pricing schemes.

If, flat rates will be costlier, and consumers who are on flat rates are ‘over-
paying’, effectively subsidizing system costs for others.

If, marginal rates are costlier, and consumers on flat rates are “underpaying”,
effectively shifting their impact on system costs to others.

Intra-Season Analysis

Within the same season, different classes have different values of DIR. To compare, we
can see the averaged DIR for different classes across the two billing periods:

Table 2 — DIR for the 2017/2018 billing period.

Ca3 C24 C25 C26
Average Total 1.1184 1.259557143 1.824083333 1.832654545
Value
Summer 1.24805 1.421575 1.964125 1.9893
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Fall 1.024925 1.175066667 1.7527 1.7349
Winter 1.082225 1.224275 1.755425 1.749325
Table 3 -DIR for the 2016/2017 billing period:
Ca3 C24 Ca5 C26
Average Total 1.0384375 1.17218125 1.619250588 1.6282625
Value Summer 1.224225 1.378375 1.805665 1.830025
Fall 0.96615 1.0944 1.55005 1.54685
Winter 1.041975 1.17195 1.63815 1.63505
Spring 0.9214 1.044 1.51036 1.501125

Price Scheme Differences

The differences between classes within the same season mostly result from different

pricing schemes. C23 and C24 are assigned consistently higher marginal rates while C25

and C26 are assigned consistently lower marginal rates.

Table 4 — for the 2017/2018 billing period:

Classes Ca23 C24 C25 C26
Marginal Rate 8.890696678 7.89723107 5.62501405 5.64070336
Table 5 — for the 2016/2017 billing period:

Classes Ca23 C24 C25 C26
Marginal Rate 8.86940493 7.8133454 5.37756395 5.40219219

Intra-Class Analysis

Looking closer within the same class for the same season, different clusters also have
different daily indifference ratios (DIRs). Because these clusters have scaled loads, we
can attribute these differences to the shape of their load profile, which determines
portions of their consumption that are charged with a higher price and portions that are

17



charged with a lower price. To characterize the effects of their shape, we examine two
related phenomenon, peak time and peak level.

Peak Level

In theory, the flatter the load profile, the more it should benefit from a real-time pricing
scheme relative to a flat-rate scheme. This corresponds to a higher DIR. Energy charges
(LMPs) can be seen as a congestion fee on the grid’, which is higher with higher
electricity usage. The peak of LMPs is a proxy to the system peak. Therefore, as system-
wide peak loads are achieved, the marginal rate will, in theory, also hit its peak price. A
running example to illustrate this theory can be found in Appendix II.

Metrics and Visualization

To evaluate the theory on peak level, we look at a couple metrics. For each cluster, the
peak fraction (PF) can be defined:

This is a rough measure of how “peaky” the load profile is, such that a smaller PF is
indicative of a higher peak level.

Since peak fraction is not a comprehensive metric, it is supplemented with a load
duration curve (LDC) for a more qualitative interpretation of peak level. The LDC is a
plot that scales the hourly energy load by the peak usage for that load profile and
displays it in a descending order.

Figure 5 — Exemplary load duration curve (LDC).

7 https://learn.pjm.com/three-priorities/buying-and-selling-energy/Imp.aspx
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Given the LDC for each cluster, the scaled minimum load (SML) can be defined:

This effectively reflects the range of the LDC, making it a comparable metric between
clusters. A smaller SML value would suggest a higher peak level.

Peak Time

In theory, the further away the cluster peak is from the system-wide peak, the more it
should benefit from a real-time pricing scheme relative to a flat-rate scheme. This

corresponds to a higher DIR. A running example to illustrate this theory can be found in
Appendix II.

In this study, the effect of different peak times is largely measured by defining the time
deviation (TD) of a cluster peak from system-wide peak load:

Here, a higher TD corresponds to larger peak time deviation and theoretically, a larger
DIR.

Comparison of Factors

As historical system costs tend to peak in summers, shifting consumers’ behavior during
those seasons would significantly reduce system costs. As can be seen through the intra-
class analysis, peak fraction (PF) and time deviation (TD) both play important roles in
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driving customer costs. As policy makers strive to make comprehensive
recommendations, it’s valuable to explore models to characterize the relative impact of
the two factors.

Preliminary DIR Model

Consider a regression model to investigate how peak fraction (PF) and time deviation
(TD) impact the daily indifference ratio (DIR). Through the model, we compare the
relative influence of PF on DIR with the influence of TD on DIR.

We construct a multi-linear regression model such that:

By examining the sign and relative magnitude of and , we are able to first investigate
how and impact . We then compare with to see which factor is a more important
driver. According to the theoretical impacts of PF and TD (explored previously), and
should both be positive.

However, as TD is a measurement of time and PF is a ratio designed to measure peak
level, making direct unscaled comparisons would be challenging. Therefore, the
independent and dependent variables are unity normalized, such that they’re
standardized to a mean of 0 and a standard deviation of 1.

Note that would be 0 as a result of unity normalization. The standardized variables are
derived as follows:

Under standardized coefficients, direct comparisons between PF and TD are possible.
Note that TD, in theory, is positively correlated to DIR, as shown in previous sections.

Table 6 — sample statistics for the two summer seasons. For each cluster, the PF coefficient is colored blue if larger
than the TD coefficient. The TD coefficient is colored yellow if larger than the PF coefficient. The larger DIR of the
two clusters in each season is colored gold.
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c23 wd Year 2016 Summer 2017 Summer

Cluster 0 1 0 1

PF Coefficient -0.1117 0.5985 0.6166 -0.0191

TD Coefficient 0.2897 0.1669 0.1843 0.3164

DIR 1.2501 1.2002 1.228 1.2722
c23 wn Year 2016 Summer 2017 Summer

Cluster 0] 1 0 1

PF Coefficient -0.0517 0.5927 0.0553 0.5667

TD Coefficient 0.3342 0.2296 0.2797 0.2243

DIR 1.2484 1.1982 1.269 1.223
c24 wd Year 2016 Summer 2017 Summer

Cluster 0 1 0 1

PF Coefficient 0.5722 -0.0496 -0.131 0.5279

TD Coefficient 0.2955 0.3518 0.3455 0.3437

DIR 1.3617 1.4103 1.4496 1.4026
c24 wn Year 2016 Summer 2017 Summer

Cluster 0] 1 0 1

PF Coefficient. -0.1965 0.4398 -0.1405 0.4209

TD Coefficient 0.3281 0.2928 0.3124 0.2778

DIR 1.398 1.3435 1.4427 1.3914
c25 wd Year 2016 Summer 2017 Summer

Cluster 0 1 0 1

PF Coefficient -0.1326 0.349 0.3747 -0.0435

TD Coefficient 0.3023 0.421 0.4458 0.3972

DIR 1.8578 1.771 1.9324 2.015
c25 wn Year 2016 Summer 2017 Summer
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Cluster o] 1 o] 1

PF Coefficient. -0.1091 0.279 0.2749 -0.0673

TD Coefficient 0.3596 0.3882 0.3463 0.3107

DIR 1.8389 1.75496 1.9076 2.0015
c26 wd Year 2016 Summer 2017 Summer

Cluster 0] 1 0 1

PF Coefficient 0.0111 0.4737 -0.0528 0.4505

TD Coefficient 0.3733 0.3812 0.3609 0.425

DIR 1.8905 1.7974 2.0459 1.9541
c26 wn Year 2016 Summer 2017 Summer

Cluster o] 1 o] 1

PF Coefficient -0.1582 0.3775 -0.1008 0.3486

TD Coefficient 0.2993 0.286 0.2955 0.3197

DIR 1.8645 1.7677 2.028 1.9292

In general, the model agrees with our expectations. From the regression statistics, we
can observe that the higher DIR often coincides with clusters that have higher TD
coefficients, and the PF coefficient is more dominant in clusters that have a lower DIR.

After we are able to compare the coefficients directly, we need to unstandardize the
coefficients in order to tell the “full story” behind the coefficients with the units that we
wish to use. Therefore, we obtain unstandardized coefficients:

That is, one unit of change in TD will lead to a unit of change in DIR, and one unit of
change in PF will lead to a unit of change in PF. Valid comparisons are based on and
only

Refined MUR Model
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Apart from regression on DIR, we also want to investigate how PF and TD directly
impacts the total cost () consumers face under the marginal rate, as well as their relative
impacts.

However, directly performing regression on is non-ideal because the higher total cost
may be driven more by inherently larger magnitudes of consumption, as opposed to load
profile shapes. Therefore, we run regression on the “average price per unit of electricity”
consumers pay when charges are calculated based on marginal rates. In this way,
consumers’ total costs are scaled to a unit level, thereby controlling for the magnitude of
the total load.

Define as:

Notice that DIR and MUR are negatively correlated:

Therefore, we construct a multi-linear regression model that is a refined version of the
previous DIR model:

Note here we introduce an interaction term to investigate how the influence of one
independent variable on the dependent variable varies as the other independent variable
is assigned a different value. More specifically, we are investigating:

1. How the relationship between MUR and TD changes given different values of PF.
Mathematically, the MUR regression could be rearranged as:

2. how the relationship between MUR and PF changes given different values of TD.
Mathematically, the MUR regression could be rearranged as:
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The same issue with direct comparison is resolved using the same standardization and
unstandardization techniques as in previous sections. Mathematically speaking, we run
regression on:

Where and are calculated as before and:

Under standardized coefficients, direct comparison is made possible. Note that DIR is
theoretically positively correlated to TD and arithmetically negatively correlated to
MUR. By extension, TD is expected to be negatively correlated with MUR.

Table 7 — sample statistics for the two summer seasons. For each cluster, the PF coefficient is colored blue if larger
than the TD coefficient. The TD coefficient is colored yellow if larger than the PF coefficient. The larger DIR of the
two clusters in each season is colored gold.

c23 wd Year 2016 Summer 2017 Summer
Cluster 0] 1 0] 1
PF Coefficient 0.0205 -0.2312 -0.1997 -0.0206
TD Coefficient -0.451 -0.19 -0.1592 -0.1506
Interact Coefficient 0.2994 0.1457 0.1207 0.0871
DIR 1.2501 1.2002 1.228 1.2722
c23 wn Year 2016 Summer 2017 Summer
Cluster 0 1 o] 1
PF Coefficient -0.023 -0.2815 -0.0266 -0.2462
TD Coefficient -0.4529 -0.399 -0.0947 -0.3162
Interact Coefficient 0.2938 0.3308 0.0438 0.2564
DIR 1.2484 1.1982 1.269 1.223
c24 wd Year 2016 Summer 2017 Summer
Cluster o] 1 o] 1
PF Coefficient -0.2243 -0.0485 -0.0218 -0.5395
TD Coefficient -0.3494 -0.7027 -0.4541 -0.7929
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Interact Coefficient 0.2907 0.4703 0.3549 0.5741

DIR 1.3617 1.4103 1.4496 1.4026
c24 wn Year 2016 Summer 2017 Summer

Cluster o] 1 o] 1

PF Coefficient -0.0357 -0.3824 -0.0205 -0.3074

TD Coefficient -0.2322 -0.5899 -0.2487 -0.4404

Interact Coefficient 0.1953 0.4395 0.1737 0.3125

DIR 1.398 1.3435 1.4427 1.3914
c25 wd Year 2016 Summer 2017 Summer

Cluster 0 1 0 1

PF Coefficient -0.02 -0.5101 -0.5848 -0.2922

TD Coefficient -0.7139 -1.1006 -1.246 -0.9809

Interact Coefficient 0.4268 0.6974 0.8289 0.7198

DIR 1.8578 1.771 1.9324 2.015
c25 wn Year 2016 Summer 2017 Summer

Cluster 0 1 0 1

PF Coefficient 0.0843 -0.5613 -0.5526 -0.2527

TD Coefficient -0.4076 -1.5390 -1.4176 -0.8201

Interact Coefficient 0.0636 1.1955 1.1056 0.6679

DIR 1.8389 1.75496 1.9076 2.0015
c26 wd Year 2016 Summer 2017 Summer

Cluster 0 1 0 1

PF Coefficient -0.0993 -0.6049 -0.016 -0.6751

TD Coefficient -0.4942 -0.9397 -0.154 -1.1412

Interact Coefficient 0.279 0.6819 0.0926 0.7741

DIR 1.8905 1.7974 2.0459 1.9541
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c26 wn Year 2016 Summer 2017 Summer
Cluster o] 1 0 1
PF Coefficient 0.0069 -0.1256 -0.0058 -0.1332
TD Coefficient -0.0745 -0.234 -0.1371 -0.236
Interact Coefficient 0.0373 0.1895 0.0936 0.1717
DIR 1.8645 1.7677 2.028 1.9292

The results of this regression generally corroborate the DIR regression model.

Coefficients of TD are mostly higher than coefficients of PF, regardless of DIR. This is an
“improvement” from the DIR regression where coefficients of TD are only mostly higher
for clusters with the higher DIR. This suggests most costs facing clusters in summer
months are driven by time deviation.

The process of unstandardization is the same as before:

Plugging in the unstandardized coefficients into the two rearrangements of the MUR
regression to see how TD and PF are inter-dependent and simultaneously affect MUR,
we will get:

1. Arelationship between MUR and TD given certain values of PF:

Therefore, given a certain PF, one unit of change in TD will lead to a unit of change in
MUR.
2. A relationship between MUR and PF given certain values of TD

Therefore, given a certain TD, one unit of change in PF will lead to a unit of change in
MUR.

It should be noted that, in both DIR and MUR regression, there has been evidence of
heteroscedasticity in the data distribution, especially as it pertains to the relationship
between DIR and PF and the relationship between MUR and PF. However, the p-values
obtained are sufficiently small to be statistically significant under both hetero- and
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homoscedasticity cases. Because the expected relation between these variables is not
necessarily linear, standardized coefficients are solely for comparative purposes while
unstandardized coefficients are solely for illustrative purposes. In this sense, the linear
model only serves as an approximation of the positive or negative relationship between
different variables, as the distribution of the data is varied and scattered.
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Results and Discussion
Interpreting Summer DIR Regressions

Higher DIR is an indicator of higher savings potential when moving to a real-time
pricing scheme. As the TD coefficient is higher than PF coefficients for summer clusters
with a higher DIR, we can see that higher savings potentials are more driven by changes
in TD. This suggests that for summer months, clusters that are overpaying relative to
others are largely driven by time deviation. Therefore, policies should be more focused
on shifting the peak time during summer months than in other seasons, in order to
decrease system costs.

Interpreting Summer MUR Regression

We mostly observe from the summer MUR regression statistics. Such an inequality has
important policy implications:

1. indicates that TD and PF both have a positive relationship with MUR. As MUR is
negatively correlated with DIR, we can tell that TD and PF are negatively
correlated with DIR, matching our theory. Therefore, policies that encourage
peak shifting and peak flattening can both contribute to benefiting the entire
system.

2. Moreover, indicates that TD has a stronger negative influence on MUR during
summer months. Note that a lower MUR is an indicator of higher savings
potential. Corroborating the DIR regression, we see that savings potentials are
driven by changes in TD, and therefore policies should be more focused on
shifting the peak time during the summer as opposed to other seasons.

As we rearrange the MUR regression to obtain the derived coefficients of for TD and
for PF, it becomes clearer that TD and PF should not be considered in an isolated
vacuum: the influence of PF on MUR is also determined by TD, and the influence of TD
on MUR is also determined by PF.

More importantly, Consider the derived coefficients of for TD and for PF, together with
the inequality and:

1. On the one hand, if we hold the peak level constant at a high value, then policies
that encourage peak time shifting will benefit the system greatly. However, if the
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consumers’ load is very flat, then policies that encourage peak time shifting will
not contribute much to reducing the system cost.

. On the other hand, if we hold time deviation constant at a small value, then

policies that encourage peak flattening would mitigate system costs. However, if
consumers’ load peak is further away from the system peak, then policies that
encourage peak flattening will not contribute much to reducing the system cost.
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Appendix | = Marginal Cost Pricing: Component Derivations

Different components introduced hereafter may vary based on:

Conceptually, capacity, delivery and transmission charges are “fixed” rates for each
billing period, season and customer class. A broad definition for these rates is:

TAL is divided by billing period, season and class and is computed in the same manner
for capacity, delivery and transmission charges.

TAC is divided into year, season and class as well, but is calculated differently for
capacity, delivery and transmission charges:

Delivery Charge
The Delivery charge (in $/kwh) is:

Capacity Charge
The Capacity charge (in $/kwh) is
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Transmission Charge

The Transmission charge (in $/kwh) is

Energy Charge

Energy rates are dynamic as they change hourly. The energy charge used in the marginal
rate scheme is the averaged seasonal hourly locational marginal prices (LMP). It can be
expressed (in $/kwh) is
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Appendix Il = lllustrating Effects of Peak Level and Peak Time
Peak Level

Examining an example case in which the system load has a certain distribution, we
expect the unit price distribution to roughly coincide with system loads. In an ideal
scenario:

System Load Unit Price

2 3 4 & & T B

Now, consider two clusters that have the same total daily load and both have their
hourly peak at the same time as the system peak. The only variable is their peak level:

Cluster Load | Cluster Load I
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n
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=&
o [
—

n (=]
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Note that cost is calculated as the product of price and load. As cluster III has a higher
coinciding peak load with the price peak, we would expect cluster III to be charged a
higher cost than cluster I. Thus, higher peak levels are associated with higher costs on a
real-time pricing scheme.

Peak Time

Re-examining the same scenario considered above:
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System Load Unit Price
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Now, consider two clusters that have the same total daily loads and peak levels. The only
variable is their peak time deviation:

Cluster Load | Cluster Load ||
b 145
: /\ 3 /\/
0 0
I 2 2 4 5 & 7 & 0 1 2 3 4 56 6 7 8 8

As cluster I has its peak load coinciding with the unit price peak, we expect cluster I to
be charged a higher price than cluster II. Thus, larger time deviations (TD) are
associated with lower costs on a real-time pricing scheme.
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Appendix Il = Cost Analysis Metrics

Table 8 — Compilation of indifference ratios (DIRs) for the 6/1/2016 — 5/31/2017 billing period.

C23 — Single C24 — Multi C25 — Single family w/ C26 — Multi
family w/o family w/o electric space heat family w/ electric
electric space heat | electric space space heat
heat

Summer  Weekday |Gluster: 1 o o R o R e
Indifference 1.2501 1.2002  1.3617 1.4103 1.8578 1.771 1.8905 1.7974

Ratio
weekend - [Gluster o e o R R
Indifference 1.2484  1.1982 1.398 1.3435 1.8389 1.75496 1.8645 1.7677

Ratio
Ral | Weekcay ISR HONM [ o O o
Indifference 0.9601  0.9741  1.0911 1.1014 1.5726 1.5308 1.5356  1.565

Ratio
Weekend - [KGISHGRMMIN [N N o G N e
Indifference  0.9726 0.9578 1.1026 1.0825 1.5719 1.5249 1.5661  1.5207

Ratio
winer  weekday [@mster - (lo o e e
Indifference 1.0455 1.0378  1.1668 1.1755 1.6529 1.6239 1.651 1.6219

Ratio
weelend [Gluster o1 o 1o 1 o 1
Indifference 1.0458 1.0388 1.1784  1.1671 1.6534 1.6224 1.6509 1.6164

Ratio

Sprins okt GUGR1 [  for

Indifference 0.9259  0.9176 1.0436 1.0463 1.493 1.511 1.5265  1.5115 1.4953

Ratio

Weekend - [Gluisen 100 10000 [ o P e o
Indifference  0.9258 0.9163 1.0354 1.0507 1.5312 1.4901 14777  1.52
Ratio
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Table 9 — Compilation of indifference ratio (DIRs) for the 6/1/2017 — 5/31/2018 billing period. Note that DIRs were
not computed for spring 2018 as up to date LMP data was unavailable at the time of this report.

C23 — Single C24 — Multi family w/o C25 — Single C26 — Multi
family w/o electric space heat family w/ electric | family w/ electric
electric space space heat space heat
heat
Summer  Weckday |Clusten 0 o ol R o A e
Indifference 1.228 1.2722 1.4496 1.4026 1.9324 2.015 2.0459  1.9541
Ratio
weekend - feuster 1 ol A o R o e
Indifference 1.269 1.223 1.4427 1.3914 1.9076  2.0015 2.028 1.9292
Ratio

Fal weokday | CHIGRNMN RN S ) Y Y T N G

Indifference 1.0347 1.0153 1.1912 11747 11638 17896 17258  1.7832  1.7194
Ratio

weekend. | CHGSiGRRMY o T o em

Indifference 1.0341 1.0156 1.1612 1.19 1.1695 1.7763 1.7191 1.7745 1.7108

Ratio

Winter  Weekday | Custer o a0 e e
Indifference 1.0851 1.0784 1.2177 1.2201 1.7399 1.7692 1.7639 1.7319
Ratio
Indifference 1.0796 1.0858 1.2299 1.2204 1.7704  1.7422  1.7634 1.7381
Ratio
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